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Phase-ordering kinetics on graphs
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We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with
single spin-flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the
percolation cluster. For each structure we discuss the scaling properties and compute the dynamical exponents.
We show that the exponent a,, for the integrated response function, at variance with all the other exponents, is
independent of temperature and of the presence of pinning. This universal character suggests a strict relation
between a, and the topological properties of the networks, in analogy to what is observed on regular lattices.

DOI: 10.1103/PhysRevE.75.011113

I. INTRODUCTION

After quenching a system from a high temperature disor-
dered state to an ordered phase with broken ergodicity, a
phase-ordering kinetics is observed, characterized by coars-
ening of quasiequilibrated domains with a typical size L(z).
Although a first-principle theory of phase ordering is pres-
ently lacking, for systems defined on homogeneous lattices a
substantial comprehension of the dynamics has been
achieved by means of exact solutions of soluble cases, ap-
proximate theories, and numerical simulations [1]. While the
inner of domains is basically in equilibrium at the quench
temperature, the off-equilibrium behavior is provided by the
slow evolution of their boundaries. As a consequence, at
each time s, for space separations r<<L(s) or for time sepa-
rations r—s<<s intradomains quasiequilibrium properties are
probed, while for r>L(s) or r—s>s one explores interdo-
mains properties, where the aging behavior is observed. Ac-
cordingly, the correlation of the order parameter (c;(t)a(s))
between sites i, j at times s, ¢ can be expressed as the sum of
two terms

Cii(t.s5) = Cil(t = 5) + Ci¥(1.5). (1)

The first term describes the equilibrium contribution pro-
vided by the interior of domains while the second contains
the nonequilibrium information. Analogously, also the inte-
grated response function, or zero field cooled magnetization,
measured on site i at time ¢ after a perturbation has switched
on in j from time s onward, takes an analogous addictive
form

Xii(1,8) = Xij(t = 5) + Xif (£,5). 2)

On regular lattices, due to space homogeneity and isotropy,
correlation and response function depend only on the dis-
tance r between i and j. One has, therefore, C;(t,s)
=C(r,t,s), and similarly for y;(z,s).

At the heart of the nonequilibrium behavior is the dy-
namical scaling symmetry, a self-similarity where time acts
solely as a length rescaling. When scaling holds, the states
sequentially entered by the system are statistically equivalent
provided lengths are measured in units of the characteristic
size L(t) of ordered domains. All the time dependence must
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enter through L(z), and the aging parts in Egs. (1) and (2)
take a scaling form in terms of rescaled variables [2]
x=r/L(s) and w=L(t)/L(s),

C*(r,t,5) = Clx,w), (3)

X*4(r.1,5) = s~ xx(x,w). (4)

The characteristic length grows according to a power law
L(t) ~t"%. Nonequilibrium exponents such as a,, z, are ex-
pected to be universal. Namely, they depend only on a re-
strict set of parameters, such as space dimensionality and
number of components A of the order parameter, on the
conservation laws of the dynamics and are independent of
temperature.

In defiance of this basic comprehension in homogeneous
systems, our understanding of phase ordering on inhomoge-
neous structures is particularly poor, although examples,
ranging from disordered materials, to percolation clusters,
glasses, polymers, and biomolecules, may be abundantly
found in physics, economics, chemistry, and biology [3].

In this paper we study the phase-ordering kinetics of the
Ising model with nonconserved order parameter on some
physical graphs [4], namely networks with the appropriate
topological features to represent real physical structures.
These structures are constrained to be embeddable in a finite
dimensional space and to have bounded coordination num-
ber. Among these, we consider random fractals, i.e., percola-
tion clusters, and geometrical fractals, such as the Sierpinski
gasket and carpet and others (see all the cases considered in
Fig. 1). We discuss the results of numerical simulations and
compare them with the predictions provided by a large-\
model, where exact calculations can be carried out [5,6]. In
the large-N model the general framework of scaling behavior
is maintained on generic graphs, and the exponents depend
on the topology of the network only through the fractal di-
mension d; and the spectral dimension d;, a large scale pa-
rameter encoding the relevant topology. In particular, one
finds z=2d,/d; and a,=(d;~2)/2. As observed in Ref. [7]
and in our simulations, this general framework provided by
the soluble model seems to be quite unrepresentative of the
situation in scalar systems, with dicrete symmetry, e.g., Ising
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FIG. 1. The structures considered in the paper.

and Potts.. A basic feature missed is the fundamental role
played by activated processes on inhomogeneous structures.
Actually, on homogeneous structures the temperature is an
irrelevant parameter, in the sense of the renormalization
group [1]. Long-time, large-scale properties do not depend
on the quench temperature in the whole low temperature
phase. Exponents related to the aging behavior are then in-
dependent of the thermal noise. On the other hand, structure
inhomogeneities exert a pinning force on interfaces or other
topological defects, whose further evolution can only be me-
diated by activated processes. Activated processes may be
present in nondisordered models on regular lattices as well,
where they sometimes play a fundamental role, but without
changing large-scale, long-time properties. On fractal sets,
on the other hand, pinning forces are exerted on many length
scales and contribute to the aging behavior. These forces
cause a stop-and-go behavior hindering the power laws and
preventing a straightforward definition of the exponents. At
relatively high temperatures, where pinning barriers are more
easily surmounted, slip-stick effects are less severe. In these
cases the general scaling scheme (3) and (4) can be investi-
gated and the nonequilibrium exponents can be defined. It
turns out, however, that pinning forces are still subtly at
work, making exponents temperature dependent.

A notable exception in this vague scenario is represented
by the response function exponent a,. Interestingly, at vari-
ance with all the other exponents, its value only depends on
the structure considered, is independent of temperature and
of the presence of stick-slip intermittency. This universal
character calls for a strict and direct relation between a, and

precise topological properties of the network, bypassing any
microscopic dynamical mechanism. We develop an argument
showing the relation between this exponent and fundamental
equilibrium properties. In particular, a, must take a positive
value whenever the statistical model on the network consid-
ered has a phase transition at a finite critical temperature 7.,
whereas a,=0 on structures with 7.=0. The same picture is
provided by the solution of the large-N model on graphs.
This is what we find, with good accuracy, in the simulation
of discrete symmetry models on all the inhomogeneous
structures considered. We measure a,=0 or a, >0 whenever
structures with 7.=0 or 7,>0 are considered. This is of
particular interest, since for discrete symmetry models, topo-
logical and connectivity properties are known to play a fun-
damental role in determining equilibrium and critical behav-
ior [8], but a direct link with the topological features of the
network is still lacking. Our results provide an evidence for
some relationship between nonequilibrium kinetics and large
scale topology on general networks and suggest that the
same topological features of graphs determine critical behav-
ior and nonequilibrium exponent a, during phase ordering
[6].

This paper is organized as follows: In Sec. II we introduce
the Ising model that will be considered in the simulations.
We also introduce the basic observables, and discuss the nu-
merical techniques. In Sec. III we discuss the outcome of the
numerical simulations on different structures. In particular,
Sec. IIT A deals with structures with 7,.=0: The percolation
cluster at p,., the Sierpinski gasket and the T-fractal. Section
III B is devoted to structures with a finite 7,, namely the
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percolation cluster above p,, the Sierpinski carpet and toble-
rone lattice. In Sec. IV we discuss the value of the exponent
a, in all the cases considered, and the form of the
fluctuation-dissipation plots. Section V contains a final dis-
cussion and the conclusions.

II. MODEL AND OBSERVABLES

The Ising model is defined by the Hamiltonian,

Hlo]=~J2 0,0}, (5)
(ij)
where o;==1 is a unitary spin and (ij) are nearest neighbors
on a graph.
The dynamics is introduced by randomly choosing a
single spin and updating it with Metropolis transition rate

w(lo] — [0']) = min[1,exp(— AE/T)]. (6)

Here [o] and [¢'] are the spin configurations before and after
the move, and

AE=H[o']-H[o]. (7)

We consider a system of N spins initially prepared in a
high temperature uncorrelated state and then quenched, at
time =0, to a low final temperature 7}.

As already discussed, the dynamics of the spins in the
bulk of domains provide the equilibrium contribution while
what is left over accounts for the aging behavior. Since equi-
librium dynamics is well understood, the stationary parts in
Egs. (1) and (2) are generally well known. In particular, at
Ty=0 equilibrium dynamics is frozen and there are no sta-
tionary contributions. On the other hand, much interest is
focused on the aging terms. These can be isolated by sub-
tracting the stationary parts computed in equilibrium, from
the whole quantity measured in the phase-ordering stage.
This first method, however, is computationally very demand-
ing. Therefore it is much more efficient to resort to a second,
different method. This amounts to study a modified system
where T} in the transition rate (6) is set equal to zero if the
spin to be updated belongs to the bulk, namely if it is aligned
with all its neighbors. The bulk degrees of freedom, which
alone contribute to the stationary parts, feel 7,=0; recalling
that the equilibrium dynamics is frozen at T,=0, and that,
therefore, the stationary parts of the observables are zero, by
computing quantities with this modified dynamics one iso-
lates the aging terms. In doing so one has the evident advan-
tage of simulating a single system and, moreover, to update
only the spins on the interfaces, whose number in the late
stage is a small fraction of the total degrees of freedom.
Clearly this technique is meaningful if the properties of the
aging terms are not affected by this modified dynamics with
no bulk flips (NBF), as expected on the basis of the general
idea that stationary and aging degrees of freedom are statis-
tically independent. In order to prove this quantitatively, one
can measure the aging part of an observable with the NBF
technique and compare it with the same quantity obtained
with the first method. This was done on regular lattices in
Ref. [9], proving that the aging parts obtained with the two
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methods are the same in the late stage. This allows one to use
the modified dynamics to compute aging properties. All the
results presented in the following are obtained with this
method. Let us also mention that the NBF is a particular case
of a more general Ising model with a local-field dependent
temperature introduced in Ref. [10]. It can be shown [10]
that letting 7,=0 in the bulk raises the critical temperature.
This is expected since fluctuations in the bulk are sup-
pressed. As a consequence, with NBF one can have phase
ordering also for values of the temperature corresponding,
with the standard dynamics, to a disordered phase. As we
will discuss below, this fact may represent a formidable ad-
vantage on inhomogeneous graphs.

Let us discuss the case of graphs where a phase transition
occurs at a finite critical temperature 7,. We denote these as
systems of class I. For these structures we can consider
quenches to finite temperatures 7,<T,.. The characteristic
size L(r) then grows until it becomes comparable with the
system size and the new equilibrium state at 7 is globally
attained. We always consider sufficiently large systems to
prevent equilibration on the simulated time scales. The dy-
namics in this regime is equivalent to that of an infinite sys-
tem, for which the final equilibrium state is never reached
and L(r) keeps growing indefinitely. By analogy with regular
lattices, in the late stage one might expect the power law

L(1) ~ 1'%, (8)

although some caveats will be discussed in the following. On
regular lattices the value z=2 is found quite generally. In the
solution of the large- N model on graphs [5] or in the frame-
work of approximate theories [7] one finds z=2d,/d,, but
such a relation is not expected for scalar systems.

Now we turn to systems of class II, namely those systems
for which, with standard dynamics, 7,.=0. For every finite 7/
the system eventually equilibrate to a state with a finite co-
herence length &(7), which diverges in the 7;— 0 limit. If
the temperature is sufficiently low, an interrupted phase or-
dering is observed until L(r) becomes comparable with &(T})
and equilibration occurs. The phase-ordering phenomenon
can be widened at will by decreasing Ty, and the scaling
behavior with Eq. (8) can be studied. Quite generally, how-
ever, on inhomogeneous structures one cannot set Tf=0 di-
rectly, because this would freeze the dynamics due to pinning
effects. For the same reason, also very low temperatures are
not numerically accessible, since it takes an exponentially
long time to surmount pinning barriers. From the numerical
point of view, then, one must find a reasonable compromise
between two contrasting issues. Namely, 7; must be suffi-
ciently low in order to have a wide scaling regime preceding
equilibration, but also sufficiently large to allow pinning bar-
riers being overtoped. This may be in some cases impossible.
Fortunately, the use of the NBF dynamics simplifies consid-
erably the problem. As we have already pointed out, with
NBEF the critical temperature is raised. In the case of system
where 7.=0 with standard dynamics, the effect of NBF is to
move T, from zero to some finite value. Then one has a
whole low-temperature region where phase-ordering occurs
asymptotically without being interrupted by equilibration,
much alike in systems of class 1. This allows to study the
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scaling behavior also in this case. For all the reasons dis-
cussed above, in this paper we will always present results
obtained with NBF dynamics.

Generally speaking, when scaling holds the characteristic
length L(z) can be estimated from the knowledge of the two-
points equal time correlation function, obtained letting t=s in
Eq. (1),

G0 =(a,(1) - 7;(0)), )
where (---) means an ensemble average, namely taken over
different initial conditions and thermal histories. In homoge-
neous systems according to Eq. (3) one has

Gi§(1) = G*(r.1) = g(x), (10)

where x=r/L(t). For scalar order parameter with sharp inter-
faces, a short distance behavior (x<<1) of the type 1—g(x)
~x is found [1,11], namely a Porod’s tail g(u)~u~**" in
momentum space for large u=kL(r). With Eq. (10) the char-
acteristic length can then be evaluated, for instance, as the
half-height of G(r,7), namely from the condition

G[r=L(1),1] = 3G*(0,1). (11)

On usual lattices the size of domains can be easily related
to the density of interfaces p(r). In fact, since domains are
compact, the ratio between their surface and their volume is
proportional to L()™' and one has p(f) ~L(z)~!. Since as-
ymptotically p(7) has a power-law behavior

p(t) ~ 1, (12)
this implies
0=1/z. (13)

In homogeneous structures, then, p(¢) provides an indirect,
alternative method for the determination of L(z), and hence
of z.

On generic graphs the notion of a distance is not as
straightforward as on regular lattices and, considering the
correlation function (9) one should, in principle, retain the
full dependence of G, ;(r) on i and j. This would be a formi-
dable task without probably providing much insight into the
physics and, in particular, into the scaling behavior. On the
other hand, once a notion of a distance is adopted, the be-
havior of G(r, 1), and in particular its scaling properties, may
depend on the distance used. For these reasons we do not
have a simple recipe for inferring scaling behaviors from
equal time correlation functions. Then, in order to provide at
least an evidence of the dynamical scaling symmetry for
some of the structures considered in Sec. III, we will intro-
duce a definition of distance along a natural direction (usu-
ally the border of the structure). With this definition, we will
check the validity of Eq. (10) and we will compute L(z)
through Eq. (11). We stress, however, that the validity of this
procedure is limited to the particular definition of distance
used. Another, independent, approach to the analysis of the
scaling behavior, which does not imply the notion of a dis-
tance, is provided by the two time quantities.

The two time quantities that will be considered in this
paper are the (spatially averaged) autocorrelation function
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N
1
Clt,5) = 2 {oi(0) - i(5)) (14)
i=1
and the integrated (auto)response function
t
x(t,s) = f dt'R(t,t"). (15)
N

The quantity

N
PPN €10

NiZ dh(t') (16)

s
h=0

is the (spatially averaged) linear response function associated
to the perturbation caused by an impulsive magnetic field 4;
switched on at time ¢’ <7.

On regular lattices, scalings (3) and (4) and power-law
growth of L(z) imply

C%(t,s) = h(y) (17)
and

X*(1,5) =574 (y), (18)

where y=t/s and h(y)=C(0,y), f(y)=x(0,y), and the large-y
behaviors

h(y) ~y™, (19)

fy) ~y™x. (20)

Equations (17) and (18) may be used to check if dynamical
scaling is obeyed, avoiding the problems related to the defi-
nition of a distance affecting G*$(r,t). Let us mention, by the
way, that in our simulations the same conclusions about the
existence of the scaling symmetry are provided by G*(r,t)
(with a definition of distance along a natural direction, as
discussed above) and by C*(t,s).

In order to compute x(z,s) we enforce the out of equilib-
rium generalization of the fluctuation dissipation theorem de-
rived in Refs. [12—14], which relates the response function to
particular correlation functions of the unperturbed system

Tx(t,s) = %(C(t,t) - C(t,s) - f t <a,~(t)B,-(t’)>dt’),

21

where

Blol=~-2 (o;- a))w([a] —[o']). (22)

o

In this equation [o] and [o”’] are two configurations differing
only by the spin on site i, taking the values o; and o7, re-
spectively. This relation allows to compute the integrated
response function by measuring correlation functions on the
unperturbed system, avoiding the complications of the tradi-
tional methods where a perturbation is applied, and improv-
ing significantly the quality of the results [14].

Finally, let us notice that the relation (13) does not hold
on generic networks, as we will show explicitly in our simu-
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FIG. 2. (Color online) G*(r,t) is plotted against x=r/L(z) for
the (TF) and the (SG), the time ¢ ranges from 10 steps for the
shortest L(z) to 400 000 for the longest lengths.

lations. Actually, as will be discussed in Sec. III A, the num-
ber of spins on the surface of a domain of size L(f) may
depend dramatically on (among other parameters) the quench
temperature. Therefore, in general, there is not a unique re-
lation between p(#) and L(r) and they provide independent
informations.

III. NUMERICAL SIMULATIONS

In the following we will present the numerical results. We
set J=1. Statistical errors are comparable to the thickness of
the symbols. We recall that NBF dynamics is always used,
and therefore we measure directly the aging part of every
observable considered.

A. Graphs with 7.=0

Let start with systems of class II, first. The structures
considered in the simulations will be the Sierpinski gasket
(SG), the T-fractal (TF), and the percolation cluster (PC),
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FIG. 3. (SG) Two spin configurations after 7=1000 steps for the
temperatures 7;=0.95 and 7T;=3.45.

namely a diluted square lattice, at the the percolation thresh-
old (see Fig. 1). All these structures are finitely ramified, i.e.,
each arbitrary large part can be disconnected by cutting a
finite number of links and, in particular, the SG and the TF
are exactly decimable [8]. The SG and the TF are determin-
istic fractals, with dp=In3/In2 and dr=In3/In2, and d,
=2In3/In5 and d;=2In 3/In 6, respectively. The PC is a
random fractal, so that in this case the results presented are
averages over different topological realizations. The dy and
d, of the PC have been estimated numerically and with
renormalization procedures and their values are dp=1.82
and d;=4/3. The number N of spins in this structures is
265 722 and 531 442 for the SG, and TS, respectively. The
PC has been obtained by means of site percolation on a
square lattice of size 1200 at the critical dilution p.=0.407.
The results presented are thermal and topological averages
over 100 realizations.

As we already pointed out in the preceding previous sec-
tion, there is not a natural definition of distance on graphs.
For the SG, we have chosen to compute the equal time cor-
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FIG. 4. (Color online) (SG) The exponent ¢ characterizing the
behavior of g(x) for x=0.

relation function (9) by restricting i and j along the borders
of the structure. We do this because along thees lines all sites
are occupied by spins and therefore the distance between
them can be naturally defined as on regular lattices. For the
same reason, in the TF we have computed G“g(r,t)ng-g(t)
for points i and j along the baseline of the structure.

In Fig. 2, G*(r,1) is plotted against x=r/L(t) for the SG
and the TF. One finds a very good data collapse, as expected
on the basis of Eq. (10). This indicates that, with respect to
particular directions used for calculating G*(r,t), dynamical
scaling is obeyed on these structures. Notice also the pres-
ence of the Porod’s tail, for small x, implying that interfaces
are sharp objects at the relatively low temperatures consid-
ered in Fig. 2. However, when the temperature is raised, the
interfaces broaden on the fractal substrate, as shown in Fig.
3. Here one expects a deviation from the Porod linear behav-
ior. This can be clearly seen in Fig. 4. Here we plot the
exponent ¢ which regulates the small x decay of g(x), namely
1-g(x)~x¢, as a function of T}.

The characteristic size L(r), obtained as in Eq. (11), is
shown in Fig. 5. This length grows roughly as a power law,
but with a superimposed oscillation which is more pro-
nounced at low temperatures. These log-periodic oscillations
are very reminiscent of what one observes in the related
problem of Brownian motion on this structure [15] and in
short time dynamics simulations on the SC [16], indeed they
can be linked to the discrete symmetry invariance of fractals
[17]. In our case they originate as an effect of pinning forces
acting on the growth of clusters at different discrete scales.
In fact, as shown schematically in Fig. 6 for the SG, if two
triangles happen to be ordered differently, in order to start
reversing one of the two to achieve a global ordering, one
must flip one of the interfacial spins, for example, the one
marked with an arrow. This move requires an activation en-
ergy AE=4J and can then be accomplished on a time 7
=exp(4J/Tj). The dynamics then proceeds without activated
processes until all the triangle is reversed but, then, a new
activated step is required and so on. During the time 7 the
dynamics on the triangle in consideration is frozen. Since all
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FIG. 5. (Color online) The characteristic length L(z) is plotted
against ¢, for two different temperatures 7;=1.2 and T;=3.0 for the
(SG) and T;=1.25 and T,;=3.0 for the (TF).

the triangles have the same qualitative behavior, with some
fluctuations, the overall behavior of L(r) shows a periodic
oscillation due to the recurring slow down caused by acti-
vated processes. An analogous phenomenon occurs in the TF.
Clearly, since 7 decreases at larger temperatures, this phe-
nomenon is less evident, although still present even at rela-
tively high temperatures, as shown in Fig. 5.

The curves of Fig. 5 can be quite convincingly fitted by a
power law with periodic oscillations superimposed. The ex-
ponent z of the power law, however, should be thought of as
an effective exponent resulting from the balance between
nonactivated processes obeying a growth law (8) with a cer-
tain value of z, and the activated processes whose net effect
is an overall slowing down. Since the relative importance of
these two processes is regulated by Ty, z turns out to be
temperature dependent, as shown in Fig. 7. On the basis of
the previous discussion, one would expect to have a faster
growth, namely a larger 1/z, for higher T,. This is indeed
observed in Fig. 7 in a broad range. For very large tempera-
tures 1/z seems to saturate. This is perhaps due to the neigh-
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borhood of the critical temperature (that with NBF turns out
to be T.=3.6 and T.=2 for the SG and the TF, respec-
tively), slowing down the dynamics much in the same way as
it happens on regular lattices.

A pattern similar to that of L(¢) is observed for p(z). This
quantity, defined as the density of spin which are not fully
aligned with their neighbors, is shown in Fig. 8 for the SG,
TF and PC. Also in this case one observes oscillations on top
of the power-law behavior (12). The value of 6 also depends
on temperature, as shown in Fig. 7. Differently from 1/z,
however, the behavior is strongly nonmonotonous, with a
broad maximum at intermediate temperatures. As already ob-
served, the exponent # and 1/z are not trivially related, as on
homogeneous structures. In the limit of low temperatures one
finds an exponent € consistent with t9=—df/z, which can be
understood on the basis of the following argument. Let us
consider again, for simplicity, the SG of Fig. 6. When the
temperature is very low interfaces are very likely located in
the pinning positions, as can be seen in Fig. 3. A domain,
therefore, is a triangle of size L(f), with a volume V& L(1)%,

and a number of surface spins n,=3. The density of interfa-
cial spins is, therefore p(t) ~ L(¢)~%. One then has

p=- 4
Z

, (23)

instead of Eq. (13), holding on regular lattices. Let us remark
again, however, that, although this relation is consistent with
our data in the limit of small 7}, it is not of general validity.
Actually, as already evident from Fig. 3 and from the non-
linear behavior of g(x) at small x, for larger temperatures,
interfaces are no longer located on the pinning centers.

Let us consider now the behavior of two time quantities.
The autocorrelation function for the SG, TF, and PC are plot-
ted in Fig. 9 against y=t/s. According to Eq. (17), one
should observe data collapse of the curves with different s.
This is indeed observed, further supporting the evidence of
dynamical scaling. One also finds the large-y-power law be-
havior (19) with an exponent \ strongly dependent on tem-
perature. Let us turn to consider the response function. Ac-
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cording to Eq. (18) the exponent @, can be obtained as the
slope of a double logarithmic plot of x“4(z,s) against s, with
y held fixed. Such determination should be independent of y,
within errors. We show this plot in Fig. 10 for the TF. We
obtain aX:O.OliO.OZ which is consistent with aX:O, simi-
larly to that found in homogeneous systems with 7,=0
[19-21]. Analogous values are found for all the structures
with T.=0. Then, by plotting x“¢(¢,s) against y one should
find data collapse, how it is indeed shown in Fig. 11 for the
SG, TF, and PC at different temperatures. In conclusion, the
autocorrelation and response function obey the expected
scaling forms (17) and (18).

B. Graphs with 7,>0

In this section we will consider systems of class I. In
particular we will study the phase-ordering kinetics on the
diluted square lattice (DS) above the percolation threshold,
the roblerone lattice (TL) obtained by replicating the Sierpin-
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FIG. 11. (Color online) (SG) x“4(z,s) is plotted against y=¢/s for different values of s, for Ty=3 (SG), T/=3, and T;=1 (TF) and for 7=3

and T;=1.25 (PC).
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ski gasket along a third spatial direction z, and the Sierpinski
carpet (SC). These structures are represented in Fig. 1 and
they all have infinite ramification. The SC is a deterministic
fractal with d;=In8/In3 and d, estimated to be 1.81. The
dynamics of the SC has been previously studied numerically
in quenches at T, in Refs. [16,18] and below T in the frame-
work of the time-dependent Ginzburg-Landau equation in
Ref. [7]. The TL is a physical graph, obtained by the direct
product of a SC with a linear chain, and therefore it presents
anisotropic behavior along different directions. Its d; and d,
are the sum of the respective dimensions of the SC and of the
linear chain d=1. The DS is a random structure with the
same large scale topology of a two-dimensional regular lat-
tice.

For the SC, we have computed the equal time correlation
function (9) along the borders of the structure, analogously
to what was done for the SG. The TL is an anisotropic struc-
ture, since it is translational invariant along the z direction
alone. Therefore we have computed the equal time correla-
tion function on the planes with a constant z, and in the z
direction separately. These are denoted as Gy(r,7) and

G?4(r,1), respectively. The former is computed along the bor-
ders of the structure, as for the SG. In Fig. 12 G*(r,t) is
plotted against x=r/L(z) for the TL and the SC. One finds a
good data collapse for the TL, as expected on the basis of Eq.
(10). The scaling is not observed for the SC in the range of
times accessed in our simulations. Notice also in these cases,
the presence of the Porod’s tail, for small x, implying that
interfaces are sharp objects at low temperature. As in the
case of the SG, when the temperature is raised the interfaces
broaden and the Porod behavior does not hold.

The characteristic size L(¢), obtained as in Eq. (11), is
shown in Fig. 13. For the TL there are two different lengths
L,,(?) and L,(t) obtained from GS (r,1) and G2(r,1), respec-
tively. Also in this case the presence of log periodic oscilla-
tions on top of an average power-law growth is observed.
Similarly to the case discussed in Sec. III A, this phenom-
enon is due to pinning forces. As shown schematically in
Fig. 14, in fact, the length of an interface is decreased if it
crosses the holes of the structures, as in the configurations
(A) and (C), which are local energy minima. In order to
evolve from (A) to (C), the interface must move to configu-
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ration (B), which requires activated processes. Therefore in
this case the oscillations can be related to the energy pinning
acting not on a single site, as for the SG, but on an extended
boundary. For the SC the exponent z is z=0.33 and z
=0.45 at T;=2 and T;=3. The behavior of p(z) is similar to
that found for the structures with 7,=0, discussed in Sec.
IIT A. This quantity, is shown in Fig. 15 for the DS, TL, and
SC. For the SC, #=0.38 and 6=0.43 at T/=2 and T;=3.
Therefore also on these structures both # and z depend on the
temperature.

Let us consider now the behavior of two time quantities.
The autocorrelation function for the DS, TL, and SC are
plotted in Fig. 16 against y=t/s.

For the TL one has a good data collapse for the larger
values of s, according to Eq. (17). The situation is different
for the DS and SC. In these cases, there is no data collapse in
the figure. Therefore, from the analysis of both G*(r,) and
C%(t,s) one can conclude that dynamical scaling is not ob-
served in the range of time accessed in our simulation on the
infinitely ramified fractals considered in this paper, while it is
obeyed on the TL.

Let us turn to consider the response function. From
X*(t,s) we extract a, as the slope of a double logarithmic
plot of x*8(¢,s) against s, with y held fixed, as described
regarding Fig. 10. We obtain a,=0.21, a,=0.25, and a,
=0.18 for the DS, the TL and the SC, respectively. Plotting
sx*8(t,s) against y we find a good data collapse, indepen-
dently from the temperature, as shown in Fig. 17, indicating
that Eq. (18) is obeyed. Also the large-y behavior (20) is
obeyed. Let us stress that, interestingly, x*$(¢,s) obeys the
scaling forms (18) and (20), even when the analysis of both
G*(r,t) and C“(z,s) implies that scaling is not obeyed, as
for the DS and SC.

IV. THE RESPONSE FUNCTION EXPONENT
AND THE FLUCTUATION DISSIPATION PLOT

In the preceding section, we have checked the validity of
the scaling form (18) in the fractal structures considered, and
we have determined the value of the exponent a,. As already
emphasized, while all the other quantities turn out to be very

W

———

i
T

e
8|
I
1

FIG. 14. (Color online) Schematic representation of a cluster (shaded region) on a SC evolving from configuration (A)—(C).
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sensitive to the final temperature of the quench, this expo-
nent assumes a well-defined value in all the low temperature
region. On regular lattices, analytical calculations in the vec-
tor O(N) model in large-A\ limit [22] find the following de-
pendence on dimensionality:

d-d;
0——— ford <dy,
a = dy—dp
X |eo with In corrections for d =dy,
0 for d > dy,

(24)

where d; is the lower critical dimension of static critical
phenomena and d;;=4. Numerical simulations [21,23,24] of
discrete and O(N) vectorial systems, with conserved and
nonconserved order parameter, are consistent with Eq. (24),
and dy=3 or dy=4 for scalar or vectorial models, respec-
tively. This shows that the nonequilibrium exponent, a,, is
related in a nontrivial way to the topology of the underlying

lattice, through d. Interestingly, this relation implies a,>0
when the system is above d;, i.e., when a phase transition at
finite temperature 7. is present, a,=0 at d; and a, <0 below
d;. This result for regular lattices suggests that the nonequi-
librium dynamics of statistical models, and in particular the
response function exponent, could be related to important
topological properties also in the case of generic graphs. This
hypothesis can be checked in some detail in systems with a
continuous symmetry, because in this case it is well known
that a large scale parameter, the “spectral dimension” d,, en-
codes the relevant topological features, uniquely determines
the existence of phase transitions [25] and controls the criti-
cal behavior [26]. In other words on generic networks d;
plays the same role played by the Euclidean dimension d on
regular lattices. In particular, vectorial models on graphs ex-
hibit a phase transition at finite temperature only if d,>d;
=2. Solving an O(N) model in the large- N limit [6] one can
show that this property holds true also for the nonequilibrium
exponent a,. In fact, one finds the same expression (24) as
for regular lattices, with d, replacing d. Then, again one has
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FIG. 16. (Color online) (DS) C%(t,s) is plotted against y=¢/s, at T;=1.25 for the (DS) and at T;=3 for the (TL) and (SC).

aX>O when the system is above d;, i.e., when a phase tran-
sition at finite temperature T, is present, and a, <0 when
T.=0 [6]. The conclusion is that, for models with a continu-
ous symmetry there is a well-defined relation between the
nonequilibrium exponent a, and the topological features of
the network which regulate the critical properties. In this
case, this features are totally described by a single index,
namely d,. The next question is if a similar picture holds for
scalar systems, where the counterpart of d; is not known.
Namely, if the nonequilibrium exponent a, is related to the
critical properties, and in turn to topology, such that a, >0 or
a, =<0 holds for graphs with 7.>0 or 7.=0, respectively. An
argument [6] based on the topology of class II networks sug-
gests that a, =0 is expected for these systems. The values of
a, reported in Sec. III show quite convincingly that the
above conjecture is verified in all the cases considered in our
simulations. One has a,=0 in all the structures of class II
and a,>0 in those of class I. This result is particularly in-
teresting for discrete symmetry models. In fact, while for
O(N) models the presence of phase transition can be inferred

from d,, there is not such a general criterion for discrete

models. Our data suggest that a, may be used to infer the
presence of phase transition on a generic network. We recall
again that this result directly links a, to some relevant topo-
logical features of graphs. For this reason, although a, is a
nonequilibrium dynamical exponent, it is totally independent
of all the nonuniversal details of the dynamics we have de-
scribed in Sec. III. We have already observed, in fact, that,
differently from all the other dynamical exponent, its value is
robust and temperature independent.

Finally, we mention that the value a,=0 found in the
structures of class II is associated to an anomalous
fluctuation-dissipation plot [23]. Reparametrizing in x(z,s)
the time ¢ in terms of C(¢,s), according to the theorem by
Franz, Mezard, Parisi, and Peliti [27], under broad hypoth-
eses the relation

d*x(C,
_71im SXED
dc

§—0

= Peg(q) (25)

C=q

exists between the nonequilibrium two time functions y, C
and the equilibrium probability distribution Pc,(q) of the
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overlaps Q([o],[0"])=(1/N)=¥. 0;0] between two configu-
rations [o], [¢'],

>

[o10"]
xXaQ([ol.lo']) -q).

Using the d-like form of P,y (g) of the low temperature state
of the ferromagnetic models considered in this paper, one
obtains [23] the well-known broken line fluctuation-
dissipation plot of y versus C. However, as discussed in Ref.
[6], when a,=0 the theorem (25) cannot be applied straight-
forwardly and one gets a nontrivial fluctuation-dissipation
plot which is not related to Pey(q).

Pu(@)=— S exple BH[o]+ Ho'])

72

(26)

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the phase-ordering kinetics
of the Ising model with spin-flip dynamics on a class of

physical graphs. The evolution is in some respects qualita-
tively similar to what observed on regular lattices. After the
quench one has the formation and growth of domains of the
two competing ordered phases. Scaling symmetry is obeyed
quite generally on finitely ramified structures, but not on in-
finitely ramified fractals in the range of times considered.
Differently from coarsening on regular lattices, the fractal
nature of the networks pins the interfaces on locally stable
positions. Escape from the pinned positions is achieved by
means of activated processes, but subsequently the interfaces
are trapped again. When interfaces are pinned, the growth of
the domain size L(¢) is inhibited. Because of this recurrent
phenomenon the usual power growth law of L(r) is modu-
lated by an oscillation, which is more evident when the pin-
ning is stronger, namely at low temperatures. The necessity
of activated moves on many discrete time and/or space scales
makes a great difference with respect to regular lattices. On
regular lattices the temperature is an irrelevant parameter [ 1],
in the sense of the renormalization group. Namely, in all the
low temperature regions the dynamics is controlled by the
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zero temperature fixed point. One has, therefore, the same
dynamical exponents in all quenches to T,<T,, regardless of
the temperature. On fractal networks, instead, the situation is
different, because the dynamics of activated processes are
faster the higher is 7. As a consequence, exponents are al-
ways found temperature dependent.

A notable exception is the response function exponent a,,
which turns out to be stable and temperature independent.
This already suggests that a, may be related to a more fun-
damental property of the system which remains stable under
temperature variations. Interestingly, we find a, =0 on all the
considered graphs which do not support a ferroparamagnetic
transition at a finite critical temperature, while aX>O in all
the other cases. The same situation was found [22-24] on
regular lattices, where a, is related to the Euclidean dimen-
sion. On these lattices, the Euclidean dimension is the topo-

PHYSICAL REVIEW E 75, 011113 (2007)

logical parameter that determines the existence of phase tran-
sitions and regulates the critical properties. This calls for the
hypothesis that, also on generic graphs, a, could be related to
the relevant topological features which govern the critical
behavior, although for systems with a discrete symmetry,
such as the Ising model considered here, a unique topologi-
cal indicator, analogous to d is not known. For example, it is
known that structures with the same fractal dimension and
different lacunarity belongs to different universality classes
[28]. Interestingly, our result suggests that a, can be used to
infer topological properties of graphs.
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